

IMPEKK[®]

Implantable Poly-Ether-Ketone-Ketone Polymer

IMPEKK[®]

PEKK produced by Seqens "IMPEKK[®] polymer" is a high performance thermoplastic designed for permanent surgical implants such as spinal, cranial, orthopedics and dental implants. Its tailored crystallization speed enables IMPEKK[®] polymer to be perfectly suited for Additive Manufacturing.

Chemical structure of Poly-Ether-Ketone-Ketone (PEKK)

Key properties

The presence of 2 ketone groups compared to other PAEK polymers (Poly-Aryl-Ether-Ketone) gives IMPEKK® polymer greater polarity and allows for better acceptance of functional fillers, providing a wide range of formulation choices for implantable medical device manufacturers. IMPEKK® polymer is composed of ether (flexibilizing) and ketone (rigidifying) groups. The more ketone groups there are, the higher the Tg (Glass Transition temperature) and the better the mechanical properties. IMPEKK® is a copolymer that includes terephthaloyl and isophthaloyl units. This modularity allows fine tuning of crystallization rate and Melting point temperature (Tm).

Terephthaloyl Para linkage

Isophthaloyl Meta linkage

- Elastic modulus close to cortical bone
- X-ray translucency
- Chemical inertness
- Oustanding compressive strength
- High Tg
- Excellent tribological properties
- Excellent barrier properties
- Toughness
- Sterilizable

Applications

Amenable to all polymers processing techniques (Injection Molding/Extrusion): **IMPEKK® 1G-T** (granules for Testing and Development)

	Norm	IMPEKK® 1G-T
Appearance	/	Golden Yellow or White to cream solid
Polymer type	/	Semi-crystalline
Melting range/point (°C)	DSC DIN EN ISO 11357	345-375/358
Glass Transition (°C)	DSC DIN EN ISO 11357	160-170
Tensile test at Break (MPa)	DIN EN ISO 527-1	115
Tensile Modulus (GPa)	DIN EN ISO 527-1	3,7
Impact Strength	DIN EN ISO 179-1eU	180 kJ/m²
Impact Strength (notched)	DIN EN ISO 179-1eA	5,7 kJ/m²
Density	DIN EN ISO 1183	1,30 g/cm³
% Tere/Iso	/	80/20
Crystallization speed	/	Very fast
Processing temperature (°C)	/	385°C
Availability	/	Q3/22

Particularly suited for Additive Manufacturing: **IMPEKK® 3D-F-T** (filaments for Testing and Development)

IMPEKK® 3D can be printed both amorphous and semi-crystalline.

	IMPEKK® 3D-F-T	
Appearance	Golden Yellow or White to cream solid	
Polymer type	Pseudo-amorphous	
Diameter	1,75 mm	
Packaging	500 g spool	
Availability	Available	

PEKK-based Cranial Implant printed by Kumovis

PEKK-based Spinal Cage Implants printed by Kumovis

IMPEKK® 3D-F-T Filament

If you are interested in our IMPEKK[®] for implantable medical application, please contact us for more information: **alexandra.ngawazenang@seqens.com**

21 Chemin de la sauvegarde 69134 Ecully FRANCE alexandra.ngawazenang@seqens.com WWW.SEQENS.COM

IMPEKKTM

PEKK produced by Seqens "IMPEKK[™] polymer" is a high performance thermoplastic designed for permanent surgical implants such as spinal, cranial, orthopedics and dental implants. Its tailored crystallization speed enables IMPEKK[™] polymer to be perfectly suited for Additive Manufacturing.

Chemical structure of Poly-Ether-Ketone-Ketone (PEKK)

Key properties

The presence of 2 ketone groups compared to other PAEK polymers (Poly-Aryl-Ether-Ketone) gives IMPEKK[™] polymer greater polarity and allows for better acceptance of functional fillers, providing a wide range of formulation choices for implantable medical device manufacturers. IMPEKK[™] polymer is composed of ether (flexibilizing) and ketone (rigidifying) groups. The more ketone groups there are, the higher the Tg (Glass Transition temperature) and the better the mechanical properties. IMPEKK[™] is a copolymer that includes terephthaloyl and isophthaloyl units. This modularity allows fine tuning of crystallization rate and Melting point temperature (Tm).

Terephthaloyl Para linkage

Isophthaloyl Meta linkage

- Elastic modulus close to cortical bone
- X-ray translucency
- Chemical inertness
- Oustanding compressive strength
- High Tg
- Excellent tribological properties
- Excellent barrier properties
- Toughness
- Sterilizable

Applications

Amenable to all polymers processing techniques (Injection Molding/Extrusion): **IMPEKK™ 1G-T** (granules for Testing and Development)

	Norm	IMPEKK™ 1G-T
Appearance	/	Golden Yellow or White to cream solid
Polymer type	/	Semi-crystalline
Melting range/point (°C)	DSC DIN EN ISO 11357	345-375/358
Glass Transition (°C)	DSC DIN EN ISO 11357	160-170
Tensile test at Break (MPa)	DIN EN ISO 527-1	115
Tensile Modulus (GPa)	DIN EN ISO 527-1	3,7
Impact Strength	DIN EN ISO 179-1eU	180 kJ/m²
Impact Strength (notched)	DIN EN ISO 179-1eA	5,7 kJ/m²
Density	DIN EN ISO 1183	1,30 g/cm³
% Tere/Iso	/	80/20
Crystallization speed	/	Very fast
Processing temperature (°C)	/	385°C
Availability	/	Q3/22

Particularly suited for Additive Manufacturing: **IMPEKK**[™] **3D-F-T** (filaments for Testing and Development)

IMPEKK[™] 3D can be printed both amorphous and semi-crystalline.

	IMPEKK™ 3D-F-T	
Appearance	Golden Yellow or White to cream solid	
Polymer type	Pseudo-amorphous	
Diameter	1,75 mm	
Packaging	500 g spool	
Availability	Available	

PEKK-based Cranial Implant printed by Kumovis

PEKK-based Spinal Cage Implants printed by Kumovis

IMPEKK™ 3D-F-T Filament

If you are interested in our IMPEKK[™] for implantable medical application, please contact us for more information: **alexandra.ngawazenang@seqens.com**

21 Chemin de la sauvegarde 69134 Ecully FRANCE alexandra.ngawazenang@seqens.com WWW.SEQENS.COM

(in) 🕑 🕩